COASTCOLOUR

Possibilities and Limitations of regional processing

Roland Doerffer HZG 3rd Coastcolour User Consultation Meeting Lisboa, Portugal, 19-20 October, 2011

What are the issues?

- Coastal waters have a variety of constituents with different optical properties
- These properties may vary with time / season
- Exceptional events may occur such as phytoplankton blooms of species with different optical properties
- Sea bottom might have an effect, depending on the concentrations of water constituents
- Floating material
- Presently it is not possible to meet this variety with one bio-optical model / algorithm

Overview

- Challenge of coastel colour research
- Limitations by atmospheric correction
- Limitations by in water algorithms
- Regional processing
- How to detect und push the limits
- Recommendations for next steps

Sources of uncertainties

- Errors in atmospheric correction -> water reflectances
- Link between AC correction and in water retrieval
 - Water reflectance in AC must meet actual (regional) properties
- Bio-optical model of algorithm does not agree with the actual properties
 - e.g. type of mineralic SPM, phytoplankton bloom, red tide
- Masking effect of dominant component (e.g high SPM, low chlorophyll)
- Saturation effect of spectral bands
- Different signal depths for multiband algorithm
- Variability in conversion IOP -> concentration
- Errors and uncertainties of in situ data used as reference
- Match up problems (scale, size of area, time, vertical distribution)

What determines the radiance spectrum at TOA

Case 1 water algorithm based on reflectance ratio model R445 / R555

Morel / Antoine MERIS Case 1 water ATBD

Uncertainties due to the bio-optical model

Sensitivity at different concentration ranges and spectral bands

Chl. 5/10 mg m-3 **TSM 1 g m-3** aYS(443) 0.1 m-1 Chl. 5/10 mg m-3 **TSM 100 g m-3** aYS(443) 0.1 m-1

Sensitivity at different concentration ranges and spectral bands

RLw for MERIS bands 1 (412 nm), 6 (560 nm), 10 (708 nm)

Uncertainties due to ambiguities for different concentration mixtures

Ambiguities 2

Typical North Sea coastal water: ay_443: < 0.2 m-1, TSM < 5 mg /l

Signal depth at different spectral bands

Multiband algorithms: the information for each band may come from a different water layer

Bio-optical model: relationship between a_pig and chl_a

443 nm, log10 scale, NOMAD data

Regional processing

- Specific properties of a region concerning coastal water RS?
 - Nutrient level which might cause high phytoplankton biomass and discolouration (red tides, phaeocystis blooms)
 - water properties such as stratification, salinity, convergence zones, partly together with nutrients, which might cause blooms, e.g. cyanobacteria in the Baltic Sea, Coccolithophiorides
- Shallow water: bottom reflection
- Shallow water and estuaries: high suspended matter concentrations
 - Red clay, yellow clay
- High concentrations of organic matter input
 - High yellow substance in Baltic Sea
 - Extreme high yellow substance in Arctic coastal water, e.g. Laptev Sea
- If these conditions are known, algorithms can be adapted to:
 - Dominant components
 - Concentration ranges
 - Uncertainties for subdominant components can be estimated

Alternative NNs

- Bio-optical model based on optical components -> atmospheric correction
- Atmospheric part of AC based on AERONET data model (R. Santer), adapted to coastal aerosol climatology
- Training based directly on field data
- Inverse NN with only 1 output parameter
- Inverse NN with only 1 output parameter and adapted input band sets
- Forward NN used as forward model within an optimization loop

Direct NN, Test of training results: chlorophyll, NOMAD

Chlorophyll, logn scale

Reproduction of frequency distribution

Direct training, round robin in situ data set

NN for kd489

Histogram kd489 measured and NN derived

NIR NN algorithm

- Uses bands 560, 620, 665, 708 nm
- Normalized to band 560, i.e. 3 inputs to NN
- Advantage:
 - Shallow water application
 - Better separation from yellow substance
 - Works also at very high chl. concentrations
- Disadvantage
 - Less sensitive at low chl. Concentrations (<0.1 mg m-3)

Test of training results NIR bands: chlorophyll

Chlorophyll, logn scale

Reproduction of frequency distribution

Further development of AC and water Algorithms

- Present version uses inverse NNs for atmosphere and water
 - Bounded to fixed set of spectral bands
 - Fixed set of retrieval variables with fixed ranges
 - Fast but limited flexibility
- Alternative approach
 - Uses only forward NNs and autoNNs
 - Combined with constrained optimisation procedure (LM)
 - Separate atmosphere and water forwardNN
 - Flexible use of spectral bands for AC and water
 - Flexible use of variables to be retrieved
 - One set of forward NN for different applications
 - Computes uncertainty matrix for all variables
 - Variables and spectral bands can be controlled by switches and boundaries of constraining mechanism
 - Slower due to iterations in optimization loop, but forwardNN faster
- Tests
 - First tests with MERMAID and NOMAD positive

Scheme for forwardNN based procedure

How to compute uncertainties

- Uncertainties are defined relative to in situ observations, which have their own uncertainties, which should also be determined
- In OC-CCI 4 methods are discussed:
 - For each optical water class and each concentration level determine uncertainty from comparison with in situ and set up a look-up tables
 - include this in fuzzy logic classification
 - Determine uncertainty range from sensitivity analysis using the model of the algoirthm
 - Determine uncertainty range using the forward model in the optimization loop based on Hessean matrix
 - Use an assemble approach (multiple, different algorithms), different sensors

Recommendations

- Classification by
 - TSM level
 - Type of mineralic SPM (red clay, yellow clay)
 - Typical chlorophyll range
 - Water depth
 - Salinity and temperature
- Link these properties to spectral reflection properties
- Use fuzzy logic to get smooth transitions between water classes
- Adapt algorithm (AC and in water) to each class
- Use a library of test cases / diagnostic sites to test the algorithms and their improvements

Oligotrfophic Case 1

RLw from simulated data set

Chl_f 1.0 – 1.1 mg m-3

RLw from simulated data set

Chl_f 10.0 – 11.0 mg m-3

RLw rel to 560 nm from simulated data set

Chl_f 90.0 – 100.0 mg m-3, log scale

Next steps

- Atmospheric correction with Aeronet climatology (tested)
- Atmospheric correction with water component model (data set prepared and forward NN trained)
- Training of NNs based on measured reflectances, for sites with sufficient data
- Test forward model NN for different sites
- Extend forward model with different types of mineralic SPM
- Revise NOMAD NNs
- Improve test procedures and organisation of test data sets

Questions, remarks ?

Strategy for Water Algorithms Development

- Neural Network
 - Training with measured reflectances, if sufficiently available
 - Training with simulated reflectances, base on bio-optical model
- Generic NN based on NOMAD data set -> bio-optical model
- Regional NN
 - Based on generic, but constrained using regional concentration / IOP ranges
 - NN generation using measured reflectances
 - NN based on regional bio-optical model
- Floating cyanobacteria (Baltic Sea)
 - Linear spectral unmixing -> coverage index

Present Status of water algorithm

Available

- Generic NNs generated based on NOMAD data set
 - NN with measured data (incl. T and S)
 - NN based on bio-optical model for different wavelength sets,
 - Reflectances and normalized reflectances (ratios)
 - Normalisation NN
 - Standard Products:
 - IOPs: a_pig, a_g, a_d, bbp
 - AOPs: kd490, kd_min, z90_490, z90_max
 - FNU Formazin Nepholometric Units
 - FLH Fluorescence line height
 - MCI Maximum chlorophyll index

TODO

• Products: z_eu, z_sd

Relationship chl_f and backscattering coefficient

443 nm, 249 samples, log10 scale CC UCM 3, Lisboa, October 19-20, 2011

RLw from simulated data set

Chl_f 0.1 – 0.11 mg m-3

RLw from simulated data set

Chl_f 90.0 - 100.0 mg m-3

