

Retrieval of the diffuse attenuation coefficient Kd(λ) in open and coastal waters using a neural network inversion

Jamet, C., H., Loisel and D., Dessailly Laboratoire d'Océanologie et de Géosciences 32 avenue Foch, 62930 Wimereux, France cedric.jamet@univ-littoral.fr

3rd CoastColour User Consultation Meeting 19-20 October 2011 Lisbon, Portugal

Purpose of the study (1/2)

- Diffuse attenuation coefficient $K_d(\lambda)$ of the spectral downward irradiance plays a critical role:
 - Heat transfer in the upper ocean (Chang and Dickey, 2004; Lewis et al., 1990; Morel and Antoine, 1994)
 - Photosynthesis and other biological processes in the water column (Marra et al., 1995; McClain et al., 1996; Platt et al., 1988)
 - Turbidity of the oceanic and coastal waters (Jerlov, 1976; Kirk, 1986)

Purpose of the study (2/2)

- K_d(λ) is an apparent optical property (Preisendorfer, 1976) → varies with solar zenith angle, sky and surface conditions, depth
- Satellite observations: only effective method to provide large-scale maps of K_d(490) over basin and global scales
- Ocean color remote sensing: vertically averaged value of K_d(490) in the surface mixed layer

State-of-the art (1/2)

- One Step Empirical relationships:
 - NASA Meris algorithm (Werdell, 2009):
 - Kd(490)= $10^{(-0.8515 1.8263 X + 1.8714 X^2 2.4414 X^3 1.0690 X^4)} + 0.0166$

with X=log10(Rrs(490)/Rrs(560))

- Alternative algorithm (Kratzer, 2008)
 - Kd(490) = exp(-1.03*log(Rrs(490)/Rrs(620))-0.18) + 0.0166;

State-of-the art (2/2)

- Two-step empirical algorithm with intermediate link
 - Morel, 2007:
 - chl-a= $10^{(0.4502748-3.259491*X+3.522731*X^2-3.359422*X^3-0.949586*X^4)}$

with X=max(Rrs(443),Rrs(490),Rrs(510))

• Kd(490)=0.0166 + 0.07242[chl-a]^{0.68955}

Way to improve the estimation

- Use of artificial neural networks → Multi-Layer Perceptron (MLP)
 - Purely empirical method
 - Non-linear inversion
 - Universal approximator of any derivable function
 - Can handle "easily" noise and outliers
 - Taking more spectral information
- Method widely used in atmospheric sciences but rarely in spatial oceanography

Principles of NN

- A MLP is a set of interconnected neurons that is able to solve complicated problems
- Each neuron receives from and send signals to only the neurons to which it is connected
- Applications in geophysics:
 - Non-linear regression and inversion (Badran and Thiria, J. Phys. IV, 1998; Cherkassky, Neural Networks, 2006)
 - Statistical analysis of dataset (Hsieh, W.W, Rev. Geophys., 2004)

Advantages:

- Universal approximators of any nonlinear continuous and derivable function
- Multi-dimensional function
 More accurate and faster in operational mode

Limits and drawbacks:

- Need adequate database
- Learning phase is time consuming
- Number of hidden layers and neurons unknown: need to determine them

Dataset

- Learning/testing datasets → Calibration of the NN
 - NOMAD database (Werdell and Bailey, 2005):
 - 337 set of (Rrs,Kd(λ)) per wavelength
 - I OCCG synthetical dataset (http://ioccg.org/groups/lee.html):
 - 1500 set of (Rrs, Kd(λ)) per wavelength
 - Three solar angles: 0°, 30°, 60°
- 80% of the entire dataset randomly taken for the learning phase (e.g., determination of the optimal configuration of the artificial neural networks)
- The rest of the dataset used for the validation phase

Architecture of the Multi-Layered Perceptron:

Two hidden layers with 7 neurons on the first layer and 4 on the second layer

Dataset

- Learning/testing datasets → Calibration of the NN
 - NOMAD database (Werdell and Bailey, 2005):
 - 337 set of (Rrs,Kd(λ)) per wavelength
 - I OCCG synthetical dataset (http://ioccg.org/groups/lee.html):
 - 1500 set of (Rrs, Kd(λ)) per wavelength
 - Three solar angles: 0°, 30°, 60°
- 80% of the entire dataset randomly taken for the learning phase (e.g., determination of the optimal configuration of the artificial neural networks)
- The rest of the dataset used for the validation phase

	RMS (m ⁻¹)	Relative error (%)	Slope	r
NN	0.110	10.09	1.0	0.98

Statistics on the test dataset

Comparison with other methods

- COASTLOOC DATABASE (Babin et al., 2003)
 - Observations in European coastal waters between 1997 and 1998
 - Entirely independent dataset from NOMAD and IOCCG
 - Kd(490) ranging from 0.023 m^{-1} and 3.14 m^{-1} with a mean value of 0.64 m^{-1}
 - Nb total data: 132
- Comparison of Kd(490)

	Werdell	Morel	Kratzer	NN
RMS	1.204	0.732	0.846	0.212
Relative error (%)	48.81	43.17	124.48	25.23
Slope	0.24	0.12	0.49	0.79
Intercept	0.34	0.28	0.76	0.16
r	0.13	0.19	0.40	0.94

Conclusions and Perspectives

- On the used dataset:
 - Net overall improvement of the estimation of the Kd(λ)
 - Same quality for the very low values of Kd(490), i.e. < 0.2 m⁻¹
 - Huge improvement for the greater values, especially for very turbid waters (K_d(490) > 0.5 m⁻¹)
- Will be freely available at:
 - <u>http://log.univ-littoral.fr/oceano/</u>

SeaWiFS	412	443	510	555	670
RMS	0.379	0.249	0.227	0.196	0.206
Relative error (%)	31.57	26.08	31.87	22.34	15.70
Slope	1.02	0.88	0.68	0.64	0.67
Intercept	0.15	0.18	0.16	0.12	0.29
r	0.95	0.95	0.95	0.94	0.87

Statistical results for a SeaWiFS Kd from COASTLOOC database

Acknowledgments

- CNRS and INSU for funding
- Marcel Babin for providing the COASTLOOC database
- I OCCG for providing the synthetical database
- NASA for providing the NOMAD database