

ICOL in Coast Colour

R. Santer, A. Ruesca, O. Danne, C. Brockman and O. Aznay

Coast Colour Lisbon, 17/10, 2011

Motivation

Eutrophication is near the coast line Where the adjacency effects are

Francis GOHIN, Angéla TRABELSI et Marie-Madeleine DANIELOU

The two reflections: description dt Zmax Ζ Μ 0

Ocean

ρeρtIsotropic reflectionby the land and water

In the NIR, between B12 and B13, the land -water contrast is almost white: bare soil, sand, vegetation, snow have a little spectral dependence

Specular reflection Mainly by the water

R

Land

The Fresnel reflection is white

The adjacency effect: the scattering

Isotropic reflection: Proportional to the diffuse irradiance

Specular reflection Proportionnal to a radiance

Proportional to the optical thickness

Main outlines

- Retrieval of the aerosol model: principle and illustration
- Validation of the aerosol model
- Influence of ICOL on the L2 water product
- ICOL at L2

Loop row

6

ICOL Processing Results

The adjacency effect: illustration on the aerosol product

8

Main outlines

- Retrieval of the aerosol model: principle and illustration
- Validation of the aerosol model
- Influence of ICOL on the L2 water product
- ICOL at L2

The intercomparison game

AERONET in MERMAID

AAOT	579	472	179
AbuAlBukhoosh	80	76	28
CoveSEAPRISM	135	89	31
GustavDalenTower	129	78	41
HelsinkiLighthouse	292	236	15
LJSCO	4	2	0
MVCO	114	61	27
Palgrunden	30	14	4
Total	1363	1028	325

number of matchups, of AOT measurements, the number of matchups with AOT measurements and no MEGS flags

Angstroem

ICOL & MERMAID aerosol product

Algarve	19
EastEngChannel	12
MUMMTriOS	58
MVCO	115
NOMAD	72
NWBalticSea	9
Palgrunden	26
PlumesAndBlooms	91
SIMBADA	31
LICO	4

ICOL and AERONET

MVCO	27
Palgrunden	4

Conclusion 1 on ICOL aerosols

- ICOL is doing qualitatively what we expect:
 - Making the aerosol homogeneous at coast line
 - Going in the right way compared to MEGS
- ICOL is doing quantitatively what it can:
 - A first reasonable comparison with AERONET
- What next:
 - More validation with AERONET (AERONET in a MERIS data base)
 - Analyse the impact of the clouds

Main outlines

- Retrieval of the aerosol model: principle and illustration
- Validation of the aerosol model
- Influence of ICOL on the L2 product
- ICOL at L2

ICOL and the water reflectance

ratio_rhow_b5 🛛

Ratio Rhow_B5(with/without)

ICOL and the Chla1

Difference in chlorophyll_a (without ICOL-with ICOL)

delta_chl 🛛

The C2R AOT

The C2R Angstroem

The land water contrast does not change much between B12 & B13=> α is stable

Water reflectance

• Very small impact

ICOL lambertian indicators

- $\langle LF_R \rangle = \widetilde{L}F \otimes \widetilde{W}_R \gg \text{Land}AE_Ray$ $\langle LF_a \rangle = \widetilde{L}F \otimes \widetilde{W}_a \gg \text{Land}_AE_aer$

 $\langle CF_a \rangle = \widetilde{C}F \otimes \widetilde{W}_a \gg \text{Land}_AE_Ray$

- $\langle CF_R \rangle = \widetilde{C}F \otimes \widetilde{W}_R \gg \text{Cloud}AE_Ray$

$< LF_R >$	$< CF_R >$	$< LF_a >$	$\langle CF_a \rangle$
0.044	0.011	0.028	0.004

Conclusion 2 on ICOL L2

- ICOL impacts on the L2 product
- Usefull to know if ICOL is needed for the validation, through:
 - Simple ICOL indicators
 - Analysis of L2

Main outlines

- Retrieval of the aerosol model: principle and illustration
- Validation of the aerosol model
- Influence of ICOL on the L2 product
- ICOL at L2

Present status of ICOL

- If ICOL correctly models the AE
- If we can correctly retrieve the aerosols
- ICOL can made the atmospheric correction

ICOL to be done

- Need to use more accurate LUTs (the forward model)
- Need to implement and check a new algorithm

Acknowledgement

Thanks to ESA, ACRI and ARGANS for MERMAID (http://hermes.acri.fr/mermaid)