

Global Processing and Products from MERIS Full Resolution Data for the Coastal Zone

User Consultation Meeting 3 Optical Water Type Classification

T. Moore, M. Dowell, C. Brockmann

19.-21.10.2011 Lisbon, Portugal

CoastColour

NOMAD data set – V2

- Atlantic Ocean
- Pacific Ocean
- Indian Ocean
- Arctic Ocean

Clustering Result

8 objectively identified classes in radiance space

Image date: 2009 09 03 (RR)

Location: South of Newfoundland

Notes:

• image contains a coccolithophore bloom (usual at this time of year at this location) seen as the bright pixels in the Rrs 560 image.

Optical Water Types 1-8

• Rrs mean spectra behave as endmembers.

• Rrs class statistics form the *fuzzy membership function*.

• Fuzzy membership allows for intermediate values between 0 and 1.

OWT 9 - coccolithophore class

- A collection of 8 classes (green) the collectively form the 9th OWT (red are the NOMAD 8). These were derived from satellite data (SeaWiFS) using the coccolithophore mask.
- Coccolithophore Rrs peaks at 490nm, compared to 555nm for sediment classes.

CoastColour Implementation of OWT

- On November 19, 2010, the fuzzy logic code (originally in c) developed at the University of New Hampshire was successfully ported into the java-based Beam software at Brockmann Consult in Germany.
- The fuzzy code classifies ocean color radiometric level 2 (based on remote sensing reflectance) into 9 different optical water types (OWTs).
- Based on initial tests done by M. Peters and T. Moore, the java code and the c code were computing the same results for 1 test pixel.
- Based on image testing completed on Nov. 23, 2010, the java-based code in Beam is producing identical results for the same image processed at UNH.

🚪 Fuzzy Water Classification	🐖 Fuzzy Water Classification
Fuzzy Water Classification	Fuzzy Water Classification
Name: 22516_000001072035_00175_15760_0001.N1_fwc ✓ Save as: BEAM-DIMAP Directory: C:\Users\carsten\Desktop ✓ Open in VISAT	Run Cose

Image comparisons

- Fuzzy membership maps for OWTs 2-9 are compared (there were few OWT 1 memberships in this scene).
- The dominant OWT (the OWT with the maximum membership) and the fuzzy sum (sum of all memberships) are also compared.
- These form the standard output products from the fuzzy code.

Membership

OWT 4

OWT 5

Membership

Membership

BEAM

OWT 9

UNH

Membership

BEAM

UNH

Fuzzy Sum

Dominant OWT

0

Analysis (T. Moore)

- BEAM and the UNH fuzzy classification codes are producing identical results for the fuzzy membership maps.
- The UNH code screens out pixels in the 'dominant' OWT map based on a membership sum threshold - currently set to a value of 0.01, so there are a few pixels that have been screened from the UNH image. Not implemented in CoastColour BEAM Processor.
- Otherwise, everything looks perfect.

Example

Example

Class membership along transect

((class_5)* tsm_std+ (class_6+class_7)* tsm_high)/(class_5+ class_6 + class_7)

TSM transect

- OWT offers the possibility to select per pixel suitable algorithms and merge them according to the class membership
- OWT has been integrated into the CoastColour L2W Prototype processor
- More testing and validation will be done for definition of final L2W algorithm
- Algorithm for propagating the errors is under discussion, in close cooperation with OC-CCI