



# Comparison between MERIS and GOCI in regional seas around Korea

#### Young-Je Park, Yu-Hwan Ahn, Jung-Mi Yoo KOSC staff

Korea Ocean Satellite Center (KOSC), Korea Ocean Research and Development Institute (KODI)

19-20 Oct 2011 CoastColour UCM3, Lisbon, Portugal

# Outline

- GOCI overview
- Some interesting GOCI images
- Inter-slot radiance discrepancy in GOCI L1B image
- Image-based GOCI and MERIS comparison





# GOCI (Geostationary Ocean Colour Imager) Project

- GOCI is on board the Korean geostationary satellite, COMS, with other two payloads, Meteorological Imager and Ka-band satellite communication.
- GOCI was developed for 2003-2010 by Korea Aerospace Research Institute (KARI) and Astrium, France as a Korean space program. Supported by Ministry of Land, Transport and Maritime affairs and supervised by Yu-Hwan Ahn, KORDI.
- GOCI was **successfully launched** on 27 June 2010 by Ariane-V at the Kourou space centre.
- KOSC (Korea Ocean Satellite Center) of KORDI is in charge of initial test and follow-on operational mission (mission planning, data acquisition and distribution, Cal/Val, algorithm development and applications).





### **GOCI** sensor







# **GOCI** optical layout



**Three Mirror Anastigmatic Telescope** 





# GOCI image example: Sea fog in the northern Yellow Sea

#### <u>19~23 Feb 2011</u>







# GOCI image example: Massive green algae floating on Yellow Sea

#### <u>13 June, 19-20 July, 2011</u>

13 June : First observed near Chinese coast 19-20 July: Widely spread over southern Yellow Sea











(b) 7월 16일 동중국해(31N, 125E) 한국해양연구원과 일본 나가사키 대학 합동 조사에서 촬영



(c) 7월 21일 흑산도 인근 해역 (34N°31.9, 125E°27.8) 전남대학교 김광용 교수 연구팀 서 해어업관리단 무궁화 2호에서 촬영





# GOCI image example: Spring algal blooms in East Sea and Yellow Sea

<u>30 Mar 2011 (East Sea)</u> KOREA Ulleung 2011.03.30. 03:1

12 April 2011 (Yellow Sea)





## GOCI slots imaging sequence







### Inter-slot discrepancy







## Inter-slot difference: Variability within a slot border

• 20110330\_0h image: slot 3-6 border







## Inter-slot difference Variability within a slot border

Reflectance differences at slot 3-6 boundary in the 20110330-0h image







## Inter-slot difference Variability across different slot borders

Reflectance differences at different boundaries in the 20110330-3h image







#### Inter-slot difference: Variability with observation hours from GOCI image







#### Inter-slot difference: Variation with observation hours - 65 Simulation with AOT550=0.5







# Weighted average technique (GOCI 20110412-07h, South Japan)



#### [Original]

[Weighted average]





# GOCI and MERIS

|                           | GEO/GOCI                   | LEO/MERIS                                                                   |  |
|---------------------------|----------------------------|-----------------------------------------------------------------------------|--|
| Altitude                  | 35,857 km                  | 800 km                                                                      |  |
| Sensor type               | Staring-frame<br>capture   | Push-broom                                                                  |  |
| Spatial resolution        | 500 m                      | 300m – 1200 m                                                               |  |
| Spectral<br>range         | 400-900 nm                 | 390-1040 nm                                                                 |  |
| Temporal resolution       | 1 hour                     | 3 day                                                                       |  |
| Sun-Satellite<br>position | Variable                   | Stable                                                                      |  |
| Coverage                  | Local<br>(2500km x 2500km) | Global<br>(296km x 296km(FR), 575km x<br>575km(FR), 1150km x<br>1150km(RR)) |  |
| Bio-optical<br>algorithm  | Local                      | Global                                                                      |  |





# Comparison spectral band of GOCI and MERIS

| GOCI |                    |                   | MERIS |                    |                   |
|------|--------------------|-------------------|-------|--------------------|-------------------|
| Ch.  | Band<br>Center(nm) | Band<br>width(nm) | Ch.   | Band<br>Center(nm) | Band<br>width(nm) |
| B1   | 412                | 20                | B1    | 412.5              | 10                |
| B2   | 443                | 20                | B2    | 442.5              | 10                |
| B3   | 490                | 20                | B3    | 490                | 10                |
|      |                    |                   | B4    | 510                | 10                |
| B4   | 555                | 20                | B5    | 560                | 10                |
|      |                    |                   | B6    | 620                | 10                |
| B5   | 660                | 20                | B7    | 665                | 10                |
| B6   | 680                | 10                | B8    | 681.25             | 7.5               |
|      |                    |                   | B9    | 708.75             | 10                |
| B7   | 745                | 20                | B10   | 753.75             | 7.5               |
|      |                    |                   | B11   | 760.625            | 3.75              |
|      |                    |                   | B12   | 778.75             | 15                |
| B8   | 865                | 40                | B13   | 865                | 20                |
|      |                    |                   | B14   | 885                | 10                |
|      |                    |                   | B15   | 900                | 10                |











### Comparison between GOCI and MERIS

- Image date: 20110330
- Radiometric data only
- MERIS data:
  - RR data downloaded from the MERCI website
  - L2 data downloaded from the MERCI website
  - L2 data processed using C2R processor in BEAM





### 20110330 image













# Clear water: GOCI hourly data

#### **TOA reflectance at 555nm from GOCI**



# Clear water: GOCI vs MERIS

TOA reflectance at 555nm(GOCI) and 560nm(MERIS)







# Clear water: GOCI vs MERIS

TOA reflectance spectra







# Turbid area: GOCI hourly data

**TOA reflectance at 555nm from GOCI** 



The variation in the GOCI hourly measurements

- primarily due to sun angle change
- probably due to temporal variation in suspended sediment concentration



# Turbid area: GOCI vs MERIS

TOA reflectance at 555nm (560 for MERIS)



Difference between GOCI and MERIS is mainly due to viewing geometry (viewing zenith)

The reflectances from both seem to show very well the turbidity variation





# GOCI atmospheric correction

Three options in publicly available GOCI Data processing software (GDPS)

– Standard Atm. Corr.

(Gordon and Wang approach)

- SGCA (POLYMER) provided by P. Deschamp

– Spectrum shape matching algorithm by Y-H. Ahn

 Atmospheric correction comparison is challenging. The comparison shown here is just an example and should be more systematic in the future.





#### **GOCI Standar Atmospheric Correction**



# Clear water: GOCI hourly data

Water-leaving reflectance derived from GOCI



- 01 to 05 hour images shows < ~0.002 variability in water-leaving reflectance at 555

- Need to improve the atmospheric correction, especially for 00, 06, 07 hours



## Clear water: GOCI vs MERIS

Water-leaving reflectance at 555nm (GOCI) and 560 (MERIS)







# **Clear water: GOCI vs MERIS**









# Turbid area: GOCI hourly data

#### Water-leaving reflectance at 555 from GOCI





# Turbid water: GOCI vs MERIS

Water-leaving reflectance: GOCI vs MERIS



- MERIS Standard is consistently high

- GOCI and MERIS C2R noticeably differ in a part of the transect -> need insitu data





# Turbid water: GOCI vs MERIS







# Thank you!

# youngjepark@kordi.re.kr



